4727 Further Pure Mathematics 3

6 (i) METHOD 1
\(\left.$$
\begin{array}{rll}\mathbf{n}_{1}=[1,1,0] \times[1,-5,-2] & \text { M1 } & \begin{array}{l}\text { For attempting to find vector product of the pair of } \\
\text { direction vectors }\end{array}
$$

=[-2,2,-6]=k[1,-1,3] \& A1 \& For correct \mathbf{n}_{1}\end{array}\right]\)| Use $(2,2,1)$ | M1 | For substituting a point into equation |
| :--- | :--- | :--- |
| $\Rightarrow \mathbf{r} \cdot[-2,2,-6]=-6 \Rightarrow \mathbf{r} \cdot[1,-1,3]=3$ | A1 $\quad \mathbf{4}$ | For correct equation. aef in this form |

METHOD 2
$x=2+\lambda+\mu$
M1 For writing as 3 linear equations
$y=2+\lambda-5 \mu$
M1 \quad For attempting to eliminate λ and μ
$z=1 \quad-2 \mu$
A1 For correct cartesian equation
$\Rightarrow x-y+3 z=3$
A1
For correct equation. aef in this form
(ii) For $\mathbf{r}=\mathbf{a}+t \mathbf{b}$

METHOD 1
$\mathbf{b}=[1,-1,3] \times[7,17,-3] \quad$ M1 For attempting to find $\mathbf{n}_{1} \times \mathbf{n}_{2}$

$$
=k[2,-1,-1]
$$

A1 $\sqrt{ } \quad$ For a correct vector. ft from \mathbf{n}_{1} in (i)
e.g. x, y or $z=0$ in $\left\{\begin{array}{c}x-y+3 z=3 \\ 7 x+17 y-3 z=21\end{array}\right.$
$\Rightarrow \mathbf{a}=\left[0, \frac{3}{2}, \frac{3}{2}\right]$ OR $[3,0,0]$ OR $[1,1,1]$
A1
For a correct vector. ft from equation in (i)
SR a correct vector may be stated without working
Line is (e.g.) $\mathbf{r}=[1,1,1]+t[2,-1,-1]$
A1 $\sqrt{ } \mathbf{5}$ For stating equation of line ft from \mathbf{a} and \mathbf{b} $\mathbf{S R}$ for $\mathbf{a}=[2,2,1]$ stated award M0

METHOD 2

Solve $\left\{\begin{aligned} x-y+3 z & =3 \\ 7 x+17 y-3 z & =21\end{aligned}\right.$
by eliminating one variable (e.g. z)
Use parameter for another variable (e.g. x) to find other variables in terms of t
(eg) $y=\frac{3}{2}-\frac{1}{2} t, z=\frac{3}{2}-\frac{1}{2} t$

Line is (eg) $\mathbf{r}=\left[0, \frac{3}{2}, \frac{3}{2}\right]+t[2,-1,-1]$

M1 For attempting to solve equations
In either order:

M1 For attempting to find parametric solution
A1 $\sqrt{ } \quad$ For correct expression for one variable
A1 $\sqrt{ } \quad$ For correct expression for the other variable ft from equation in (i) for both
A1 $\sqrt{ } \quad$ For stating equation of line. ft from parametric solutions

METHOD 3
eg x, y or $z=0$ in $\left\{\begin{aligned} x-y+3 z & =3 \\ 7 x+17 y-3 z & =21\end{aligned}\right.$
$\Rightarrow \mathbf{a}=\left[0, \frac{3}{2}, \frac{3}{2}\right]$ OR $[3,0,0]$ OR $[1,1,1]$
eg $[3,0,0]-[1,1,1]$
$\mathbf{b}=k[2,-1,-1]$
Line is (eg) $\mathbf{r}=[1,1,1]+t[2,-1,-1]$

M1 For attempting to find a point on the line
A1 $\sqrt{ } \quad$ For a correct vector. ft from equation in (i)
SR a correct vector may be stated without working $\mathbf{S R}$ for $\mathbf{a}=[2,2,1]$ stated award M0
For finding another point on the line and using it with the one already found to find \mathbf{b}
A1 $\sqrt{ } \quad$ For a correct vector. ft from equation in (i)
$\mathrm{A} 1 \sqrt{ } \quad$ For stating equation of line. ft from \mathbf{a} and \mathbf{b}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{6}{*}{\[
\begin{aligned}
\& 6 \text { (ii) } \\
\& \text { contd }
\end{aligned}
\]} \& METHOD 4 \& \& \\
\hline \& A point on \(\Pi_{1}\) is
\[
\begin{aligned}
\& {[2+\lambda+\mu, 2+\lambda-5 \mu, 1-2 \mu]} \\
\& \text { On } \Pi_{2} \Rightarrow
\end{aligned}
\] \& M1 \& For using parametric form for \(\Pi_{1}\) and substituting into \(\Pi_{2}\) \\
\hline \& \([2+\lambda+\mu, 2+\lambda-5 \mu, 1-2 \mu] \cdot[7,17,-3]=21\) \& A1 \& For correct unsimplified equation \\
\hline \& \(\Rightarrow \lambda-3 \mu=-1\) \& A1 \& For correct equation \\
\hline \& Line is (e.g.)
\[
\mathbf{r}=[2,2,1]+(3 \mu-1)[1,1,0]+\mu[1,-5,-2]
\] \& M1 \& For substituting into \(\Pi_{1}\) for \(\lambda\) or \(\mu\) \\
\hline \& \(\Rightarrow \mathbf{r}=[1,1,1]\) or \(\left[\frac{7}{3}, \frac{1}{3}, \frac{1}{3}\right]+t[2,-1,-1]\) \& A1 \& For stating equation of line \\
\hline \multicolumn{4}{|c|}{9} \\
\hline \multirow[t]{3}{*}{7 (i)} \& \(\cos 3 \theta+\mathrm{i} \sin 3 \theta=c^{3}+3 \mathrm{i} c^{2} s-3 c s^{2}-\mathrm{i} s^{3}\) \& M1 \& For using de Moivre with \(n=3\) \\
\hline \& \[
\begin{aligned}
\& \Rightarrow \cos 3 \theta=c^{3}-3 c s^{2} \text { and } \\
\& \sin 3 \theta=3 c^{2} s-s^{3}
\end{aligned}
\] \& A1 \& \begin{tabular}{l}
For both expressions in this form (seen or implied) \\
SR For expressions found without de Moivre M0 A0
\end{tabular} \\
\hline \& \[
\begin{aligned}
\& \Rightarrow \tan 3 \theta=\frac{3 c^{2} s-s^{3}}{c^{3}-3 c s^{2}} \\
\& \tan 3 \theta=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}=\frac{\tan \theta\left(3-\tan ^{2} \theta\right)}{1-3 \tan ^{2} \theta}
\end{aligned}
\] \& M1

A1 4 \& For expressing $\frac{\sin 3 \theta}{\cos 3 \theta}$ in terms of c and s For simplifying to AG

\hline \multirow[t]{3}{*}{(ii) (a)} \& $$
\theta=\frac{1}{12} \pi \Rightarrow \tan 3 \theta=1
$$ \& \&

\hline \& $\Rightarrow 1-3 t^{2}=t\left(3-t^{2}\right) \Rightarrow$ \& B1 1 \& For both stages correct AG

\hline \& $t^{3}-3 t^{2}-3 t+1=0$ \& \&

\hline \multirow[t]{4}{*}{(b)} \& $(t+1)\left(t^{2}-4 t+1\right)=0$ \& M1 \& For attempt to factorise cubic

\hline \& \& A1 \& For correct factors

\hline \& $\Rightarrow(t=-1), t=2 \pm \sqrt{3}$ \& A1 \& For correct roots of quadratic

\hline \& - sign for smaller root \Rightarrow $\tan \frac{1}{12} \pi=2-\sqrt{3}$ \& A1 4 \& For choice of - sign and correct root AG

\hline \multirow[t]{5}{*}{(iii)} \& $\mathrm{d} t=\left(1+t^{2}\right) \mathrm{d} \theta$ \& B1 \& For differentiation of substitution and use of $\sec ^{2} \theta=1+\tan ^{2} \theta$

\hline \& $$
\Rightarrow \int_{0}^{\frac{1}{12} \pi} \tan 3 \theta \mathrm{~d} \theta
$$ \& B1 \& For integral with correct θ limits seen

\hline \& $$
=\left[\frac{1}{3} \ln (\sec 3 \theta)\right]_{0}^{\frac{1}{12} \pi}=\frac{1}{3} \ln \left(\sec \frac{1}{4} \pi\right)
$$ \& M1 \& For integrating to $k \ln (\sec 3 \theta)$ OR $k \ln (\cos 3 \theta)$

\hline \& $=\frac{1}{3} \ln \sqrt{2}=\frac{1}{6} \ln 2$ \& M1 \& For substituting limits and $\sec \frac{1}{4} \pi=\sqrt{2}$ OR $\cos \frac{1}{4} \pi=\frac{1}{\sqrt{2}}$ seen

\hline \& \& A1 5 \& For correct answer aef

\hline \multicolumn{4}{|c|}{14}

\hline
\end{tabular}

8 (i) $\begin{aligned} & a^{2}=(a p)^{2}=a p a p \Rightarrow a=p a p \\ & p^{2}=(a p)^{2}=a p a p \Rightarrow p=a p a\end{aligned}$

B1 For use of given properties to obtain AG
B1 2 For use of given properties to obtain AG
SR allow working from AG to obtain relevant properties

B1 For correct order with no incorrect working seen
B1 For correct order with no incorrect working seen
B1 For correct order with no incorrect working seen

M1 For relevant use of (i) or given properties

A1 5 For correct order with no incorrect working seen
$\left(a p^{2}\right)^{2}=a^{6}=a^{2}$
\Rightarrow order $a p^{2}=4$
(iii) METHOD 1
$p^{2}=a^{2}, a p^{2}=a^{3}$
M2 For use of the given properties to simplify
$\Rightarrow\left\{e, a, p^{2}, a p^{2}\right\}=\left\{e, a, a^{2}, a^{3}\right\}$
A1 For obtaining a^{2} and a^{3}
which is a cyclic group
A1 4 For justifying that the set is a group

METHOD 2

	e	a	p^{2}	$a p^{2}$
e	e	a	p^{2}	$a p^{2}$
a	a	p^{2}	$a p^{2}$	e
p^{2}	p^{2}	$a p^{2}$	e	a
$a p^{2}$	$a p^{2}$	e	a	p^{2}

M1 For attempting closure with all 9 non-trivial products seen
A1 For all 16 products correct

Completed table is a cyclic group
B2
For justifying that the set is a group
METHOD 3

	e	a	p^{2}	$a p^{2}$
e	e	a	p^{2}	$a p^{2}$
a	a	p^{2}	$a p^{2}$	e
p^{2}	p^{2}	$a p^{2}$	e	a
$a p^{2}$	$a p^{2}$	e	a	p^{2}

M1 For attempting closure with all 9 non-trivial products seen
$a \quad a \quad p^{2} a p^{2} \quad e$
A1 For all 16 products correct

Identity $=e$
B1 For stating identity
Inverses exist since
EITHER: e is in each row/column
B1 \quad For justifying inverses ($e^{-1}=e$ may be assumed)
OR: p^{2} is self-inverse; $a, a p^{2}$ form an
(iv) METHOD 1 M1 For attempting to find a non-commutative pair of
e.g. $\left.\begin{array}{l}a \cdot a p=a^{2} p=p^{3} \\ a p \cdot a=p\end{array}\right\} \Rightarrow$ not commutative
elements, at least one involving a
(may be embedded in a full or partial table)
M1 For simplifying elements both ways round
B1 For a correct pair of non-commutative elements
A1 4 For stating Q non-commutative, with a clear argument

METHOD 2
Assume commutativity, so (eg) $a p=p a$ M1
(i) \Rightarrow
$p=a p \cdot a \Rightarrow p=p a \cdot a=p a^{2}=p p^{2}=p^{3}$
But p and p^{3} are distinct B1
$\Rightarrow Q$ is non-commutative

For setting up proof by contradiction

For using (i) and/or given properties
For obtaining and stating a contradiction
A1 For stating Q non-commutative, with a clear argument

